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Abstract. Over the past three years we have developed the technique of buffer-gas cooling and loading
of atoms and molecules into magnetic traps. Buffer-gas cooling relies solely on elastic collisions (thermal-
ization) of the species-to-be-trapped with a cryogenically cooled helium gas and so is independent of any
particular energy level pattern. This makes the cooling technique general and potentially applicable to
any species trappable at the temperature of the buffer gas (as low as 240 mK). Using buffer-gas loading,
paramagnetic atoms (europium and chromium) as well as a molecule (calcium monohydride) were trapped
at temperatures around 300 mK. The numbers of the trapped atoms and molecules were respectively about
1012 and 108. The atoms and molecules were produced by laser ablation of suitable solid precursors. In
conjunction with evaporative cooling, buffer-gas loaded magnetic traps offer the means to further lower
the temperature and increase the density of the trapped ensemble to study a large variety of both static
(spectra) and dynamic (collisional cross-sections) properties of many atoms and molecules at ultra-low tem-
peratures. In this article we survey our main results obtained on Cr, Eu, and CaH and outline prospects
for future work.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 06.30.Ft Time and frequency – 32.30.Jc Visible
and ultraviolet spectra

1 Introduction

The very low temperatures (≤ 1 µK) and simultaneously
high densities (≥ 1014 cm−3) attainable with magnetic
trapping and evaporative cooling techniques have enabled
a number of experiments with atoms whose de Broglie
wavelengths are on the order of, or larger than, the mean
distance between the atoms. Often these wavelengths are
larger than that of visible light. Work based on evaporative
cooling [1] has in the past relied on photon scattering to
precool the atoms (with the unique, notable, exception
of atomic hydrogen). The applicability of optical cooling
has, in turn, limited the scope of species that could be
explored in the ultracold regime primarily to the alkali
metal atoms. Molecules and the vast majority of atomic
species have been relegated to the sidelines. In order for
the full impact of the cooling techniques to be realized, a
more general approach is required. Ideally, the desire for a
particular ultracold atomic or molecular species would be
matched by a straightforward production method, whose
generality would be comparable to that of the atomic or
molecular beam methods developed through the 1960’s.

Over the past three years we have developed a cooling
technique that is applicable to a wide range of species,
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including molecules. This new technique relies on ther-
malization with a cold He buffer gas via elastic collisions.
The collisional cross-section of atoms and molecules with
He is independent of any particular energy level pattern
and can increase with decreasing temperature, thus lend-
ing the technique the desired generality and efficiency.

In our work, we combined buffer-gas cooling with mag-
netic trapping. First we demonstrated the technique by
buffer-gas loading atomic europium (with a maximum
dipole moment of 7 Bohr magnetons) into a magnetic trap.
This work corroborated the feasibility of the scheme and
produced the first benefits of magnetic trapping of a com-
plex atom: a hyperfine-resolved Zeeman spectrum whose
variation with time provided clues about the relaxation
dynamics of the trapped states. About 1012 Eu atoms were
trapped.

Next, we buffer gas loaded isotopically pure chromium
atoms, 52Cr (a 6 Bohr magneton species). Like the Eu
atoms, Cr atoms were prepared by laser ablation of a
solid metal precursor. The study of the time dependence
of the simple Zeeman spectra (no hyperfine structure) led
us to the discovery of an important variant of the buffer-
gas loading technique, termed “cold loading”: the con-
densed buffer gas itself can be efficiently vaporized by
the same laser pulse that is used to ablate the metal.
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More than 1011 Cr atoms were trapped using either nor-
mal or cold loading.

The work on Eu and Cr trapping makes us believe
that it is possible to use buffer-gas loading to magneti-
cally trap all paramagnetic atoms of the periodic table
of elements. Figure 1 shows a rendition of the periodic
table of elements that emphasizes features which are of
particular interest in atom trapping. Note that the follow-
ing elements have maximum magnetic moments of 5 Bohr
magnetons or greater: Mn, Re, Tc, Mo, Cr, Eu, Gd, Fe,
Os, Ni, Co, Rh, Ir, Ru, Er, Tb, Ho, and Dy [2,3]. Such
magnetic moments can lead to high trap depths, making
these atoms prime candidates for future work, perhaps
using a table-top liquid-helium cooled apparatus.

Our efforts culminated in the first trapping of a
molecule, CaH. The molecules (with a magnetic dipole
moment of 1 Bohr magneton) were prepared by laser ab-
lation of a solid CaH2 precursor. About 108 were loaded
using 3He-buffer into an anti-Helmholtz magnetic trap.
Detailed, time dependent Zeeman spectra were measured
using laser induced fluorescence spectroscopy. These spec-
tra provided insights into both the trapping dynamics and
the electronic structure of CaH.

In this paper we give a guided tour of the main results
obtained so far with buffer-gas loaded magnetic traps.

2 Buffer-gas loaded magnetic traps

2.1 Principle

The technique of buffer-gas loading [3] relies on thermal-
ization of the species-to-be-trapped via collisions with a
cold buffer gas. The buffer gas serves to dissipate the
translational energy of the atoms or molecules, allow-
ing them to sink into a conservative trapping field. Since
this dissipation scheme does not depend on any particu-
lar energy level pattern, many atoms and molecules are
amenable to it. As in the case of evaporative cooling of
a trapped ensemble, buffer gas loading relies on elastic
collisions and, therefore, is of similar generality.

At temperatures of ∼ 1 K, all stable substances ex-
cept for He have negligible vapor pressure, so the question
arises as to how to bring the species-to-be-trapped into the
gas phase. We found that laser ablation represents a par-
ticularly suitable means, although not the only one. Metal
atoms can be efficiently vaporized by ablating a piece of
solid metal; it is also possible to “prepare” molecules, of
varying complexity, by ablating a suitable precursor [4].
In what follows we assume that the atoms or molecules
are introduced into the gas phase by laser ablation.

The thermalization process can be modelled by assum-
ing elastic collisions between two mass points, m (buffer-
gas atom) and M (species-to-be-trapped). From energy
and momentum conservation in a hard-sphere model, we
find, after thermal averaging, that the difference, ∆T , in
temperature of the atom or molecule before and after
a collision with the buffer gas atom is given by ∆T =
(T ′ − T )/κ, with T the temperature of the buffer gas, T ′

the initial temperature of the atom or molecule, and

κ ≡ (M +m)2/(2Mm). (1)

The equation for the temperature change can be general-
ized and recast in differential form:

dT`/d` = −(T` − T )/κ (2)

where T` is the temperature of the atom or molecule after
` collisions with the buffer gas atom. Equation (2) has a
solution

T`/T = (T ′/T − 1) exp (−`/κ) + 1. (3)

Under the conditions of T ′ ≈ 1000 K and M/m ≈ 50,
on the order of one hundred collisions are required for
the atoms or molecules to fall within 30% of the He buffer
temperature T = 0.25 K. In order to ensure that the atoms
or molecules thermalize before impinging on the wall of the
cell surrounding the trap (where, presumably, they would
stick and be lost), it is necessary that the density of the
buffer gas be large enough to allow for thermalization on
a path smaller than the size of the cell (i.e. on the order of
1 cm). Assuming an elastic collision cross-section of about
10−14 cm2 between the atoms or molecules and 3He, the
minimum density required is on the order of 1016 cm−3.
This requirement puts a lower limit on the temperature of
the buffer gas. Figure 2 shows the dependence of number
density on temperature for 3He and 4He at about 1 K
[5,6]. One can see that 3He (which has the highest number
density of any stable substance at low temperatures) is
suitable at temperatures as low as 240 mK.

Buffer-gas cooling combines naturally with magnetic
traps as both the loading and the trapping techniques
make use of cryogenics. In what follows we consider a
static magnetic trapping field whose field strength H in-
creases linearly with distance r from H(r = 0) = 0 at the
center up to H(r = redge) = Hedge at the edge of the trap.
Such an inhomogeneous field deflects paramagnetic species
in low-field seeking states (i.e. states whose eigenenergy
increases with increasing field strength) towards the min-
imum at its center and species in the high-field seeking
states (whose eigenenergy decreases with increasing field
strength) towards the maximum at its edge. The presence
of a process such as buffer-gas cooling, which dissipates the
translational energy of the paramagnetic species, can then
lead to trapping: this ultimately occurs when the transla-
tional energy of the atoms or molecules in low-field seeking
states falls below the value of the magnetic dipole poten-
tial at the trap edge. The number density of a trapped
paramagnetic species follows a Boltzmann distribution

n(r) = n0e−γ(r) (4)

with

γ(r) ≡ 〈µ〉H(r)
kT

≥ 0 (5)

where 〈µ〉 is the expectation value of the space-fixed mag-
netic dipole moment pertaining to a low-field seeking state
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Fig. 1. A rendition of the periodic table of elements adapted to atomic trapping. Paramagnetic elements are in grey fields.
Black and dark-grey squares designate respectively stable bosonic and fermionic isotopes.



292 The European Physical Journal D

Fig. 2. Low-temperature number density curves of 3He
and 4He. Note that the minimum number density of about
1016 cm−3 required for buffer-gas loading is attained at 240 mK
in 3He and 800 mK in 4He.

of the species, T its translational temperature, and k the
Boltzmann constant; n0 ≡ n(r = 0) is the (maximum)
density at the center of the trap. The total number, N , of
trapped atoms or molecules is related to n0 by

N = n0V (6)

where V is the effective volume of the trap. The effective
volume is determined by the temperature of the atoms or
molecules and the geometry of the trapping field. For the
spherical field considered (diameter of 5 cm and Hedge =
3 T), a model calculation yields V = V0η

−3 with V0 =
390 cm3 and η ≡ γedge. This is sufficiently accurate for
η > 5 [7]. The loss rate,

.

N , over the edge of the trap is
given by

.

N=
1
4
vnA ≡ 1

4
vn0Aeff (7)

with v the average speed of the atoms or molecules and

Aeff =
∫ ∫

edge

e−γ(r)d2r (8)

an effective trap surface area. The combination of equa-
tions (6, 7) yields the lifetime of the atoms or molecules
in the trap (in the absence of any other loss mechanism):

τ =
N
.

N
=

4V0

Aeffvη3
· (9)

This lifetime can be reduced by other trap loss mech-
anisms such as dipolar relaxation [1] and Majorana
transitions [8].

Fig. 3. Schematic diagram of magnetic trapping apparatus.
The copper cell, located in the bore of a superconducting mag-
net, is anchored to the mixing chamber of a dilution refrigera-
tor. The magnet is immersed in liquid helium. Optical access
to room temperature is provided by a fused silica window at
the bottom of the cell and a set of borosilicate windows at 4,
77, and 300 K. Only the cell and the 4 K windows are shown.
The remaining windows lie directly underneath.

2.2 Apparatus

The cross-section of the cryogenic apparatus we have used
in our experiments is depicted in Figure 3. The appa-
ratus consists of three main parts: the superconducting
magnet, the cryogenic cell, and the dilution refrigerator.
The magnet (5.1 cm clear bore) consists of two NbTi su-
perconducting solenoids encased in a titanium cask. The
two coils are arranged in the anti-Helmholtz configuration
and therefore repel each other. The repulsive force (of up
to about 105 N) is taken up by the cask. The individual
solenoids are both 2.8 cm thick with an inner and outer
diameter of 5.3 and 13.0 cm, respectively. Their centers
are separated by 3.3 cm. The entire magnet assembly is
immersed in liquid helium.

The cell is positioned at the center of the magnet.
It resides in vacuum and is separated from the magnet
(and the liquid helium) by a stainless steel vacuum can,



R. deCarvalho et al.: Buffer-gas loaded magnetic traps for atoms and molecules: A primer 293

Fig. 4. Section through the core elements of the buffer-gas
loaded magnetic trap. Vacuum isolates the relatively warm
(4 K) magnet from the cell whose temperature can be varied
between 100 and 800 mK using a resistive heater. The magnet
coils are arranged in the anti-Helmholtz configuration (currents
travel in opposite directions) and form a magnetic trap up to
3 T deep. The fused silica window at the bottom of the cell en-
ables entry of the detection and ablation lasers and extraction
of the probe beam and the fluorescence.

a tube of 5 cm diameter and 0.8 mm wall thickness. The
cell (inner/outer diameter of 4.27/4.50 cm and length of
6.8 cm) is made of OFE copper with a 4.4 cm diameter
fused silica window sealing the bottom. On the inner top
surface there is a 1 cm diameter mirror. A solid lump of the
precursor material (the source of the atoms or molecules)
is positioned near the mirror. The top of the cell is ther-
mally anchored to the mixing chamber of the dilution re-
frigerator via a copper rod of 1.3 cm diameter. The tem-
perature of the cell can easily be varied from 100 mK to
800 mK using a resistive heater. A section through the
core elements of the apparatus is shown in Figure 4.

Our detection method is either absorption spec-
troscopy (used mainly for atoms but also with molecules)
or laser induced fluorescence (used only for molecules).
Figures 5 and 6 show the respective setups. A probe beam
is generated by an actively stabilized ring laser (Coherent
899-21) used either in the Ti:sapphire or dye configuration.
The typical power used to probe the atoms is 0.1 µW and
up to 104 fold to excite the fluorescence of molecules. The
probe beam enters at an angle with respect to the cell axis
and passes through the cell center with a small offset. The
beam then reflects from the mirror at the top of the cell,
passes the cell center again, exits the cell, and is detected
by a photo-multiplier tube. The fluorescence is reflected
into a photomultiplier tube or a CCD camera preceded
by a set of filters that suppress the probe beam scatter.
The details of the techniques used to detect the individual
trapped species are given below.

A pulsed doubled YAG laser beam (Continuum I-10,
532 nm, 5 ns pulse width, 15 mJ typical pulse energy) is
used to ablate the solid precursor material.

2.3 Procedure

Our trapping procedure begins with the cryogenic cell
filled either with 4He or 3He gas. Two types of loading
were used [9].

In the first, designated as normal loading, the tem-
perature of the cell is raised prior to ablation. The cell
is heated to a temperature corresponding to the desired
density (∼ 1016 cm−3) of the helium buffer gas. Then the
ablation laser is fired, producing atoms and molecules that
diffuse through the buffer gas and thermalize with it. After
ablation, the cell temperature is lowered. This cryopumps
the helium gas to the walls of the cell.

In the second method, termed cold loading, the cell is
not heated prior to ablation. The cell is cold (∼ 100 mK)
and, therefore, a negligible amount of helium is in the gas
phase before the ablation laser is fired; it is condensed
as a liquid on the interior of the cell. Nevertheless, the
trap can still be successfully loaded. We believe cold load-
ing works because the ablation pulse brings into the gas
phase not only the species-to-be-trapped, but simultane-
ously evaporates the condensed helium that subsequently
quickly thermalizes. After the pulse, buffer-gas loading
proceeds as usual. The advantage of cold loading is a faster
cooling of the cell, as its temperature drops from a lower
initial value. If we infer the helium pressure from the cell
temperature [5], then within 5 s of the ablation pulse the
background pressure of 3He and 4He is less than 10−7 and
10−18 torr, respectively.

3 Trapping of atomic chromium

Chromium is ideally suited for magnetic trapping experi-
ments: it has a large magnetic dipole moment of 6µB (Bohr
magneton) and occurs in four isotopes, three of which are
bosons and one is a fermion. Chromium trapping can thus
lead to the study of Bose-Einstein condensates [10] as well
as of a Fermi degenerate gas [11–14]. Chromium trapping
may also benefit atom lithography research [15,16].

3.1 Experiment

The cell is filled either with 3He or 4He buffer gas. A suf-
ficient amount of 3He (4He) is present so that at temper-
atures above 0.3 K (0.9 K) the density is approximately
1017 cm−3. Below these temperatures, the density is de-
termined by the helium vapor pressure. The Cr atoms
are brought into the gas phase by single-pulse laser abla-
tion of a solid sample of isotopically pure 52Cr. The solid
52Cr is positioned at the edge of the trapping region in-
side the cell. The atoms are detected by laser absorption
spectroscopy on the a7S3 ↔ z7P3 transition at 427.6 nm
[17,18]. The probe beam is produced by doubling the out-
put of a continuous wave Ti:sapphire laser with a KNbO3
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Fig. 5. Experimental setup used for the detection of the trapped sample by absorption spectroscopy.

Fig. 6. Experimental setup used for the detection of the trapped sample by fluorescence spectroscopy using a photomultiplier
tube (a) or a CCD camera (b).

crystal. Typical probe power used is ∼ 10−7 watt. With
the above apparatus, we were able to produce, thermalize,
and trap neutral, ground-state 52Cr atoms. Both normal
and cold loading methods were used.

3.2 Results

Shown in Figure 7 are spectra of the trapped chromium
taken 2 s after ablation, using 4He as the buffer gas and

a trap depth of 2.4 T. Also shown are simulations of
the spectra. These are based on theory presented in the
Appendix (low-field limit). In calculating the spectra we
assumed a thermal distribution of atoms within our trap.
The MJ = 3 (6µB) state of 52Cr is trapped. The number
density of atoms within our trap was obtained from these
spectral simulations. In the case of cold loading, the tem-
perature was determined from this fit as well. With nor-
mal loading, we were able to load in 1 × 1011 chromium
atoms into our trap, with a peak density of 5 × 1011
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Fig. 7. Absorption spectra of trapped 52Cr(a7S3) obtained
by scanning over 4 GHz in 100 ms about the center frequency
of the a7S3 ↔ z7P3 transition at 23.386 cm−1 (427.6 nm).
Spectra taken 2 s after the ablation pulse. Broadening is pri-
marily due to Zeeman shifts. The double peaked structure is
due to the probe beam passing through the cloud of trapped
chromium atoms twice, at two different distances from the trap
center. The frequency zero is the location of the field-free line
center.

at a temperature of 1 K. With cold loading, slightly fewer
atoms were trapped: 2 s after loading, 4×1010 atoms at a
density of 4 × 1011 were trapped. Quoted atom numbers
and densities are accurate to within a factor of 2. No signif-
icant attempt was made to increase the number of trapped
atoms by optimizing the loading procedure.

The decay of the trapped chromium is shown in Fig-
ure 8. By 20 s after the ablation pulse the temperature
had returned to a low-enough value so that most of the
He buffer gas had been cryopumped to the cell walls. The
time profile was obtained by monitoring the Cr absorption
at a fixed frequency corresponding to the maximum ab-
sorbance in Figure 7. The number density was calculated
from this absorption and a spectrum taken at a short delay
time. If we fit the decay to purely one-body loss (exponen-
tial decay, ṅ = −n/τ) we find a time constant τ = 44 s.
If we fit to a purely two-body loss, (ṅ = −Gn2) we find
G = 2× 10−12 cm−3 s−1. Fitting to a combined one- and
two-body loss (ṅ = −n/τ − Gn2) yields τ = 76 s and
G = 7× 10−13 cm−3 s−1.

While the pure one-body fit is better than the pure
two-body fit, it is not clear what could be causing one-
body decay in our sample. Suspect mechanisms are evap-
oration of atoms over the trap edge, Majorana transitions

Fig. 8. Time profile of the absorption signal due to Cr atoms
trapped via 4He cold loading in a 2.4 T trap. Measurement of
the cell temperature is limited by the slow time response of
the resistive thermometer; as a result, readings up to 3 s are
of limited accuracy.

at the low-field trap center, and optical pumping by the
probe beam. However, our sample is at a sufficiently high
η (≈ 13) that evaporative losses should be negligible. Our
trap parameters are such that Majorana losses would take
place on a much longer timescale [8,19]. Optical pumping
seems unlikely, as the probe power was varied over a wide
range with little effect on the timescale of the absorption
signal.

One possible explanation of the apparent one-body
loss in our trap is inaccuracy in our calculation of the
chromium density. We compute the density at a given time
from the absorption at a single frequency at that time and
a spectrum of the atoms taken at a fixed time. It is as-
sumed that the distribution of atoms is not changing over
the trap lifetime. However, if the distribution (and hence
the spectrum) changes over time due to cooling or heat-
ing in the trap, this would distort the calculation. This
could make the fitting process inconclusive as to the exact
nature of our loss.

We also loaded 52Cr into our trap using 3He as a buffer
gas. The advantage of loading with 3He is that its higher
vapor pressure allows buffer gas loading at lower tempera-
tures than does 4He and thus at higher η. With 3He buffer
gas and normal loading, we loaded 5 × 1011 Cr atoms at
a temperature of 300 mK into a magnetic trap of depth
0.7 tesla.

The 6µB magnetic moment of Cr allows loading of our
trap at elevated temperatures. With the cell at 1.4 K,
we were able to load ∼ 1011 Cr atoms. This is of inter-
est because temperatures of 1.3 K can be easily reached
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with a pumped 4He cryostat. Such a cryostat is compara-
bly simpler than the dilution refrigerator system we cur-
rently use. Cr and other large-magnetic moment atoms
could be trapped using this simple cryostat. Although a
pumped 4He refrigerator cannot reach the cold tempera-
tures necessary to lower the vapor pressure of liquid he-
lium, it should be possible to remove the helium buffer gas
from the cell by cryopumping it with charcoal [20].

4 Trapping of atomic europium

Our choice of ground state Eu atoms (8S7/2, g = 1.993) as
a test species (the first that we trapped) was led in part
by considerations of principle and in part of experimen-
tal convenience: the large paramagnetism of Eu makes it
easy to trap and the high oscillator strength of its visi-
ble transitions makes it easy to detect [21]. The nuclear
spin, I = 5/2, of both of its naturally occurring isotopes,
151,153Eu, presented an opportunity to test the hyperfine
spectroscopy of a trapped atom and to learn about the
relaxation dynamics of the hyperfine states.

4.1 Experiment

We first investigated the thermalization of laser ablated
Eu as a function of He temperature, ranging between
300 K and 250 mK. In this preparatory work the Eu atoms
were detected by absorption spectroscopy within the (red)
z10P7/2 − a8S7/2 band (4 µs lifetime, 710.8 nm) [22]. The
Eu temperature was measured using the Doppler width of
the hyperfine lines. With 4 µmole of 3He (loaded into the
95 cm3 cell), the ablated atoms were found to thermalize
with the He gas on a time scale of 1 ms at 77 K, 4 ms
at 4 K, and 30 ms at 250 mK. These times are consis-
tent with a simple model of thermalization using a He-Eu
elastic collision cross-section of 10−14 cm2 at 4 K.

The trap is typically loaded using 4He as buffer gas and
with a magnetic trap depth ofHedge = 2 T (Hedge = 0.6 T
with 3He buffer gas). Normal loading was used, i.e. the
trapping procedure began by raising the cell temperature
to 800 mK (250 mK with 3He). Then a single YAG pulse
ablates the lump of europium and the heater is simulta-
neously turned off. The temperature of the cell rises for
about 1 s due to heating by the YAG pulse but then
quickly decreases. Over the course of 20 s the tempera-
ture of the cell and the He can drops to 230 mK (170 mK
with 3He) where the 4He density is about 1 × 104 cm−3

(4 × 1013 cm−3 with 3He) [5,6]. These densities corre-
spond to room temperature pressures of 3 × 10−13 torr
(1.3 × 10−3 torr for 3He). The trapped atoms are then
probed with the blue beam tuned to the y8P7/2 − a8S7/2

band (6 ns lifetime, 462.7 nm) [22,23].
Data is taken in one of two ways: either absorption

time profiles at given wavelengths are measured or the
laser is scanned over the entire absorption band of about
13 GHz at certain fixed delay times after the ablation
pulse. The absorption spectrum can be measured many
times for each trapped sample (scan time much shorter

than the trapping time, see below), yielding good signal
to background ratios.

4.2 Theory

Although the theory of atomic hyperfine spectra is
straightforward, all its ingredients are seldom presented
in one place; therefore, we give a brief recapitulation
below.

The Hamiltonian of an atom with total electronic an-
gular momentum J and nuclear spin I subject to a mag-
netic field H takes the form [24]:

H = gJµBJ · H+ gIµBI · H+ aI · J

+ b
(3/2)I · J(2I · J + 1)− I2·J2

2I(2I − 1)J(2J − 1)
(10)

where J and I are the electronic and nuclear angular mo-
mentum quantum numbers, gJ and gI the corresponding
g-factors, a and b the hyperfine magnetic dipole and elec-
tric quadrupole coupling constants, and µB the Bohr mag-
neton. The matrix elements of H can be obtained analyti-
cally either in the coupled basis, |F,M〉, corresponding to
the weak-field limit or in the uncoupled basis, |MJ,MI〉,
corresponding to the strong-field limit. Hence either yields
the eigenenergies and line strengths in closed form.

4.2.1 Low-field limit

In the low-field limit, the angular momenta J and I couple
to a resultant total angular momentum F = J + I char-
acterized by a quantum number F = J + I, J + I −
1, ..., |J − I|; each value of F has 2F + 1 projections
M = −F,−F + 1, ...,+F on the space-fixed axis defined
by the direction of H. Note that there are

∑
F (2F + 1) =

(2J + 1)(2I + 1) coupled states |F,M〉. The eigenenergy
is given by

E(F,M) =
1
2
aK + b

(3/4)K(K + 1)− I(I + 1)J(J + 1)
2I(2I − 1)J(2J − 1)

+MgFµBH (11)

where

K ≡ F (F + 1)− J(J + 1)− I(I + 1) (12)

and

gF = gJ
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
(13)

with gJ given by equation (A.3). The line strength fac-
tor Sq(IJ ′F ′M ′; IJFM) of a transition between states
|IJ ′F ′M ′〉 ← |IJFM〉 due to an electric dipole moment
dq (of unit magnitude, with q = 0 for parallel and q = ±1
for perpendicular transitions) is given by

Sq = |〈IJ ′F ′M ′|dq|IJFM〉|2 (14)
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with

〈IJFM |dq|IJ ′F ′M ′〉 =

(−1)F−M
′+J′+I+F+1[(2F + 1)(2F ′ + 1)]1/2

×
(

F 1 F ′

−M q M ′

){
J 1 F
F ′ I J

}
〈J ||d||J ′〉. (15)

4.2.2 Strong-field limit

In the strong-field limit, the angular momenta J and I
are no longer integrals of motion but their projections MJ

and MI on the space-fixed axis are. Since MJ and MI take
respectively (2J + 1) and (2I + 1) values, there are (2J +
1)(2I + 1) uncoupled states |MJ,MI〉. In the uncoupled
basis, the eigenvalues of Hamiltonian (10) are given by

E(MJ,MI) = MJgJµBH+MIgIµBH+ aMJMI

+
9b

4I(2I − 1)J(2J − 1)

[
M2

J −
1
3
J(J + 1)

]
×
[
M2

I −
1
3
I(I + 1)

]
(16)

(neglecting the magnetic octupole and higher-order inter-
actions).

The line strength factor Sq(M ′J,M
′
I;MJ,MI) of a tran-

sition between states |M ′J,M ′I〉 ← |MJ,MI〉 due to an elec-
tric dipole moment dq (of unit magnitude, with q = 0
for parallel and q = ±1 for perpendicular transitions) is
given by

Sq = |〈M ′J,M ′I |dq|MJ,MI〉|2 (17)

with

〈M ′J,M ′I |dq|MJ,MI〉 =

(−1)J−MJδ(M ′I ,MI)

(
J 1 J ′

−MJ q M
′
J

)
〈J ||d||J ′〉. (18)

4.2.3 Populations and intensities

The initial field-free populations, P (F ), of an F -state at
a temperature T are given by

P (F ) = (2F + 1) exp
(
−EF

kT

)
· (19)

Due to the small spacing of the hyperfine energy levels, the
Boltzmann factor exp (−EF/kT )→ 1 and the initial field-
free populations are in general determined essentially by
the degeneracy factor, P (F )→ (2F + 1). In keeping with
this, the initial populations in the low-field limit are equal,
i.e. each |F,M〉 state has the same weight. If the atoms
were created in low field and thermalization of hyperfine
states did not occur, then in the high-field limit the initial

Fig. 9. Correlation diagram between the low- and high-
field limits for the states of either of the stable isotopes of
Eu(a8S7/2). Also shown is the transition to the y8P7/2 state
used to probe the atoms.

populations of the |MJ,MI〉 states are determined by adi-
abatic transfer of the low-field populations of the |F,M〉
states which, in turn, is given by the transformation of the
coupled to the uncoupled basis:

P (MJ,MI) ∝ 〈JMJ, IM |FM〉2 =

(2F + 1)

(
J I F

MJ MI −M

)2

. (20)

In our experiments, we create the atoms at high field and
high temperature where, apparently, the hyperfine states
are equally populated (see the simulations below). The
correlation between the low- and high-field limits is deter-
mined by the non-vanishing 3-J symbols. The correspond-
ing correlation diagram is shown in Figure 9.

The intensities, I, of the transitions between states in
absorption or excitation spectra are then given by

I(M ′J,M
′
I;MJ,MI) ∝ P (MJ,MI)S(M ′J,M

′
I;MJ,MI).

(21)
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Fig. 10. Sample absorption spectra of the trapped ensemble
of Eu at 0.6 T in the a8S7/2 ↔ y8P7/2 band at 462.7 nm
measured (a) 20 s, (b) 40 s, and (c) 60 s after the ablation
pulse. For clarity, the (b) and (c) spectra are shifted on the
absorbance scale by −0.025. The simulated spectrum, shown
by the dotted line, provides the indicated assignment of the
lines: all features are due to the MJ = 7/2 state of Eu(a8S7/2).
For each isotope, there are two sub-bands of magnetic hyperfine
transitions, with ∆MJ = 0 and −1. Note that for the ∆MJ = 0
transitions in the 151Eu isotope, all six MI nuclear spin states
are clearly resolved.

4.3 Results

Figure 10 shows sample spectra of the trapped ensemble at
0.6 T trap depth (250 mK loading temperature) measured
20, 40, and 60 s after the ablation pulse. One can see that
the main features of the spectra change little with time but
their integrated absorption intensities are proportionately
decreasing.

The trap spectra were assigned on the basis of the spec-
tral constants of 151,153Eu taken from reference [23] and
the distribution function of the number of atoms subject
to a given H-field, N(H). The latter was determined for
a given magnetic state and loading temperature from the
calculated spatial distribution of the H-field and factors
accounting for the probe beam geometry.

From the simulations it follows that essentially only
the MJ = 7/2 state is trapped. This corresponds well with
our model of loading: the lowerMJ states are not as tightly
confined and leave the trap quickly. The corresponding
simulated spectrum together with the assignment of the
lines according to the isotope and hyperfine substrate is
also shown in Figure 10. With this assignment, the initial

Fig. 11. Averaged absorption time profiles (full line) for 4He
at 800 mK (top) and 3He at 250 mK (bottom) loading mea-
sured at a fixed frequency of the probe laser close to the band
origin. A total of 4 (8) time profiles were averaged to obtain the
displayed 4 He (3He) data. Note that about 20 s after the ab-
lation pulse (time zero) the density of the 4He buffer gas drops
to about 5× 104 cm−3 (4× 1013 cm−3 for 3He). The data are
fitted with a combined one-body and two-body loss rate func-
tion (dashed line). About 1 × 1012 atoms are initially loaded
into the trap using 3He buffer gas. The inset on the right shows
an absorption time profile measured under the same conditions
but with the trap off.

temperature of the atoms in 3He could be determined to
be 250± 30 mK.

We also measured the absorption time profiles at fixed
laser frequency and used the data to study the loss kinet-
ics of the atoms from the trap. The absolute atom number
was determined using the fitted values from the simulation
of the spectra and the published line strength factors [25].
The atomic densities are a natural product of the same
calculations. Our atom density and number is determined
within ±60%. Figure 11 shows the time profile for 4He and
3He loading (upper and lower panel, respectively) assum-
ing the atoms remain at the initial loading temperature.
An initial density of 5×1012 cm−3 was achieved with 3He
loading.

The 4He data (from 0 to 120 s) fits poorly to an
exponential function (one-body loss). A combined Eu–
Eu two-body loss and one-body loss yields good fits.
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Fig. 12. Dependence of lifetime τ of trapped Eu on the trap
depth parameter η. Data obtained at different buffer-gas tem-
peratures and for different magnetic field strengths.

This combined fit is dominated by two-body loss and is
shown as the smooth dashed line in the figure. Using only
the data after the 4He is pumped out (20–120 s) yields
similar quality fits for either two-body or one-body loss.
These fits result in a two-body collisional loss rate con-
stant G = 4 ± 2.5 × 10−14 cm3 s−1 or an exponential
time constant τ = 70± 10 s. However, after cryopumping
(t > 20 s) the trapped sample is out of thermal contact
with the cell walls and the temperature of the sample may
change due to evaporative cooling. This uncertainty pre-
vents rigorous interpretation of these loss rates.

The 3He data also fits poorly assuming only a constant
one-body loss but does fit well to two-body (1/t) loss. A
combined one-body and two-body loss function was fitted
to the data. From this and fits of similar data we deter-
mined the loss to be two-body with a two-body (Eu–Eu)
collisional loss rate constantG = 3±2×10−14 cm3 s−1 at a
temperature of 170 mK. Unlike the 4He case, here the sam-
ple is in thermal contact with the cell wall. Fits performed
assuming a three-body process (Eu–Eu–Eu) yielded simi-
lar quality fits to the two-body fits. Thus, three-body loss
cannot be ruled out, although it seems unlikely given the
Eu densities present in the trap. Figure 12 shows the net
lifetime of the Eu atoms in the trap as a function of the re-
duced trap depth η. This dependence is seen to be roughly
exponential.

5 Trapping of calcium monohydride molecules

5.1 Experiment

The CaH molecules are created by ablating a solid sample
of CaH2 placed within the cell at the edge of the trapping
region with a 10 mJ, 7 ns YAG pulse [26].

The CaH molecules are detected by laser fluorescence
spectroscopy [26]. The fluorescence is excited at 635 nm

in the B2Σ, v′ = 0 ← X2Σ, v′′ = 0 band [27,28] and de-
tected mainly within the B, v′ = 0 → X, v′′ = 1 band
at 692 nm (the corresponding Franck-Condon factor was
calculated to be 0.028, [29]). A set of color-glass and band-
pass interference filters placed in front of the detector
(either a photomultiplier tube or a CCD camera) serves
to block the scattered probe radiation (along with the
B, v′ = 0→ X, v′′ = 0 fluorescence).

Typically, under field free conditions, only a single ro-
tational transition, N ′ = 1, J ′ = 3/2 ← N ′′ = 0, J ′′ =
1/2, can be detected. This is consistent with a fast rota-
tional relaxation of the molecules that renders the popu-
lation of higher rotational states negligible: the next ro-
tational state lies 8.5 cm−1above the N ′′ = 0, J ′′ = 1/2
ground state and the intensity of the (unobserved) cor-
responding transition is well below 0.1% of the N ′ =
1, J ′ = 3/2 ← N ′′ = 0, J ′′ = 1/2 transition. This yields
an upper limit on the rotational temperature of 1.5 K.
Using absorption spectroscopy to calibrate the fluores-
cence detection, we found that up to 1010 CaH molecules
could, under certain conditions, be formed by a single ab-
lation pulse. We were also able to detect the formation of
X2Σ, v′′ = 1 molecules, which were about 10–100 times
fewer; their scarcity precluded them from being detected
in the trap. However, we measured an upper limit of the
v′′ = 1 → v′ = 0 relaxation cross-section (in collisions
with the 3He buffer gas) to be 10−18 cm2, which suggests
that it should be possible to load them into the trap.

As the magnetic field is turned up, the field-free ro-
tational transition is observed to split into two features
shifted towards lower and higher frequencies. Below we
give a theoretical analysis [31] that assigns the feature
that shifts towards higher frequencies to the transition
from the N ′′ = 0, J ′′ = 1/2,M ′′ = 1/2 low-field seeking
state to the N ′ = 1, J ′ = 3/2,M ′ = 3/2 state, and the
feature that shifts towards lower frequencies to the tran-
sition from the N ′′ = 0, J ′′ = 1/2,M ′′ = −1/2 high-field
seeking state to the N ′ = 1, J ′ = 3/2,M ′ = −3/2 state.

Figures 13a and 13b display, respectively, spectra with
negative and positive frequency shifts taken at different
values of Hedge. All panels correspond to delay times of
up to 25 ms (with respect to the ablation pulse) when
molecules in both the low- and high-field seeking states
are spread almost evenly over the cell and their distri-
butions are nearly symmetric, peaked towards high field.
This shape reflects the available phase space, which in-
creases towards the edge of the trap due to the spherical
geometry of the field and is further enhanced at the edge
due to the saddle point.

At later times, the high-field seekers move towards the
edge of the trap, hit the wall of the cell, stick to it, and are
lost from the trap; the low-field seekers, on the other hand,
move towards the center of the trap and by 300 ms their
distribution is that of a trapped ensemble at T = 400 mK,
close to the initial temperature of the buffer gas of 300 mK.
This is displayed in Figure 14, which shows spectra taken
at different time delays with respect to the ablation pulse.
After about 300 ms the signal corresponding to the high-
field seekers (left-hand peak) is absorbed by the noise,
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Fig. 13. Spectra taken at different values of the magnetic field at the edge of trap. All panels correspond to delay times
of 25 ms with respect to the ablation pulse. The frequency scale is relative to the frequency of field-free transition R1(1/2).
Part (a) shows spectra with a negative frequency shift corresponding to high-field seekers; part (b) shows spectra with positive
frequency shift corresponding to low-field seekers. All spectra are normalized to the peak height.

see the lowest panel of Figure 14. Figure 15 shows this
distribution together with a theoretical fit corresponding
a temperature T = 400 mK and a number of molecules,
N = 108. Figure 16 shows a CCD camera image of the
trapped ensemble.

Figure 17 shows fluorescence time profiles of CaH in-
tegrated over negative and positive frequency shifts cor-
responding to high- and low-field seekers, respectively.
About 1×108 molecules are initially loaded into the trap.
The molecules have been observed to be trapped for more
than 2 s with an exponential loss time constant τ = 0.6 s.
This behavior indicates evaporation of CaH molecules over
the edge of the trap (where they stick to the walls) as the
likely loss mechanism. Figure 18 shows the exponential
dependence of the CaH lifetime in the trap on the depth.

We find that the slopes of the Zeeman curves for the
N ′ = 1, J ′ = 3/2,M ′ = ±3/2 states differ from the slopes
of the N ′′ = 0, J ′′ = 1/2,M ′′ = ±1/2 states (which are
equal to ±gS/2 with gS the electron spin gyromagnetic
ratio) due to a perturbation of the B2Σ, v′ = 0 by a close-
lying A2Π, v′ = 1 that lends the B state some of its A
character (the perturbing rotational level of the A-state
lies only 12.6 cm−1 above the N ′ = 1, J ′ = 3/2 level).

Figure 19 shows a correlation diagram between the
low- and high-field limits for states from within the
X, v′′ = 0 and B, v′′ = 0 manifolds; also shown are the
perturbing states from within the A, v′ = 1 manifold
(dashed). The states from within the X and B manifolds
are labeled by the Hund’s case (b) angular momentum
quantum numbers: N (rotation) and J (total, excluding
nuclear spin) in the low-field limit and their projections
on the direction of the field (the Z axis), MN and M , in
the high-field limit. The slopes of the eigenenergies in the
high-field limit are determined by the projection, MS, of
the spin angular momentum on Z (the Paschen-Back un-
coupling). The states involved in the spectroscopic transi-
tions detected in our experiment are shown by bold lines.
Note the different order of the eigenenergies (in J, N) in
the X and B state manifolds in either limit – due to
the opposite signs of the spin-rotation coupling constant
[27,28]. While the field dependence of the states corre-
lating with N ′′ = 0, J ′′ = 1/2 from within the X-state
manifold is trivial, given by ±gSH/2 for M ′′ = ±1/2, the
Zeeman curves of the N ′ = 1, J ′ = 3/2,M ′ = ±3/2,±1/2
states from within the B2Σ+, v = 0 state manifold are
affected by a perturbation from the A, v′ = 1 state. Their
computation is the subject of the following section.
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Fig. 14. Time evolution of the CaH spectrum. The data were
obtained after firing a single ablation pulse and monitoring the
fluorescence as a function of time at a single probe frequency.
The process was repeated at different frequencies, and the flu-
orescence averaged over the specified time window in order to
obtain the spectra. Times quoted are relative to the ablation
pulse. The spectra reveal that high-field seekers (at negative
frequency shifts) quickly leave the trap. The trapped low-field
seekers (positive frequency shifts) are confined and compressed
towards the center of the trap.

5.2 Theory

5.2.1 Field-free rotational perturbations

In the absence of an external field, the Hamiltonian of
a linear molecule is given by the sum of the vibronic,
rotational, spin-spin, and spin-orbit Hamiltonians:

H0 = Hev +Hr +Hss +Hso (22)

In what follows we will consider the interaction of a 2Σ, vΣ
with a 2Π, vΠ vibronic state. For this case, Hamiltonian
(22) simplifies since Hss = 0, as in any doublet state.
Hence, the 2Σ, vΣ ∼ 2Π, vΠ perturbation (described by
the off-diagonal matrix elements of H0) is due to the vi-
bronic overlap and the L- and S-uncoupling and spin-orbit
interactions.

Fig. 15. Fit of CaH spectrum to a thermal distribution of
trapped molecules. Data were taken with a 3 T trap depth
and a cell temperature of 300 mK before ablation, and were
integrated from 200 ms to 300 ms after the ablation pulse. This
fit determines the number and the temperature of trapped CaH
molecules to be N = 1× 108 and T = 400 mK.

In order for two rotational states to interact, their to-
tal angular momenta (excluding nuclear spin), J, and their
parities, P, must be the same and the overlap of the vi-
brational eigenfunctions of the two states must be nonzero
[32]. Therefore, to construct a suitable representation of
the field-free Hamiltonian, we need a basis set of states
with definite parity that correspond to the three electronic
states in question: a 2Σ state (|Ω| = 1/2) and two 2Π
states (one with |Ω| = 1/2 and one with |Ω| = 3/2). Such
a basis set, describing an intermediate coupling between
Hund’s cases (a) and (b), has been introduced by Radford
and Broida [33]:

|1, c/d, J〉 = (2)−1/2
(

2Σ1/2 ± 2Σ−1/2

)
(23)

|2, c/d, J〉 = a
(
2Π3/2 ± 2Π−3/2

)
− b

(
2Π1/2 ± 2Π−1/2

)
(24)

|3, c/d, J〉 = b
(
2Π3/2 ± 2Π−3/2

)
+ a

(
2Π1/2 ± 2Π−1/2

)
(25)

where

a ≡
[
X + (2− λ)

4X

]1/2

(26)

b ≡
[
X − (2− λ)

4X

]1/2

(27)

λ ≡ A

BΠ
(28)

X ≡
[

4
(
J +

1
2

)2

+ λ(λ− 4)

]1/2

(29)
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Fig. 16. A CCD camera image of the fluorescence due to a trapped CaH ensemble. Signal was integrated from 100 to 300 ms
and from 0 to 1.1 GHz frequency shift.

Fig. 17. Fluorescence time profiles (full line) for 3He at
300 mK loading of CaH integrated over negative and posi-
tive frequency shifts corresponding to high- and low-field seek-
ers, respectively. The data are fitted with a combined one-
body and two-body loss rate function (dashed line). About
1× 108 molecules are initially loaded into the trap.

and the upper and lower sign pertains respectively to the
c and d symmetry. Note that |1, c/d, J〉 → 2Σ|1/2| and for

λ → −∞, |2, c/d, J〉 → 2Π|3/2| and |3, c/d, J〉 → 2Π|1/2|;
for λ→∞, |2, c/d, J〉 → 2Π|1/2| and |3, c/d, J〉 → 2Π|3/2|.

The matrix elements of the field-free Hamiltonian of a
linear molecule in the Hund’s case (a) basis that couple
the 2Σ and 2Π states in question, first given by van Vleck
[34], are [31]:

〈2Σ1/2J |H0|2Σ1/2J〉 = 〈2Σ−1/2J |H0|2Σ−1/2J〉

= BΣ

[
J(J + 1) +

1
4

]
+∆E ≡ α (30)

〈2Π1/2J |H0|2Π1/2J〉 = 〈2Π−1/2J |H0|2Π−1/2J〉

= BΠ

(
J(J + 1) +

1
4

)
− A

2
≡ β (31)

〈2Π3/2J |H0|2Π3/2J〉 = 〈2Π−3/2J |H0|2Π−3/2J〉

= BΠ

(
J(J + 1)− 7

4

)
+
A

2
≡ γ (32)

〈2Σ1/2J |H0|2Σ−1/2J〉 = 〈2Σ−1/2J |H0|2Σ1/2J〉

= BΣ

(
J +

1
2

)
≡ (−1)sδ (33)
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Fig. 18. Dependence of lifetime of trapped CaH on the trap
depth parameter η. All data points were obtained for the same
initial temperature of the 3He-buffer gas of 300 mK.

〈2Π3/2J |H0|2Σ1/2J〉 = 〈2Π−3/2J |H0|2Σ−1/2J〉

= BΠ

[
(J − 1

2
)(J +

3
2

)
]1/2

≡ ε (34)

〈2Π1/2J |H0|2Σ−1/2J〉 = (−1)s〈2Π−1/2J |H0|2Σ1/2J〉

= 2Q
(
J +

1
2

)
≡ (−1)sξ (35)

〈2Π3/2J |H0|2Σ1/2J〉 = (−1)s〈2Π−3/2J |H0|2Σ−1/2J〉

= 2Q
[
(J − 1

2
)(J +

3
2

)
]1/2

≡ η (36)

〈2Σ1/2J |H0|2Π1/2J〉 = (−1)s〈2Σ−1/2J |H0|2Π−1/2J〉

= P + 2Q ≡ θ (37)

with ∆E the energy difference between the zero-point en-
ergies of the Σ and Π states and

P ≡ 〈Π|ALy|Σ〉 =
1
2
〈Π|AL+|Σ〉 (38)

Q ≡ 〈Π|BLy|Σ〉 =
1
2
〈Π|BL+|Σ〉 (39)

the rotational perturbation parameters; s = 0 or 1 de-
pending on whether the Λ = 0 state is Σ+ or Σ−. Us-
ing the matrix elements (30–37) we obtain for the matrix

Fig. 19. A correlation diagram between the low- and high-
field limits for states from within the X, v′′ = 0 and B, v′′ = 0
manifolds; also shown are the perturbing states from within
the A,v′ = 1 manifold (dashed). The states from within the
X and B manifolds are labeled by the Hund’s case (b) angu-
lar momentum quantum numbers: N (rotation) and J (total,
excluding nuclear spin) in the low-field limit and their projec-
tions on the direction of the field (the Z axis), MN and M ,
in the high-field limit. The slopes of the eigenenergies in the
high-field limit are determined by the projection, MS, of the
spin angular momentum on Z. The states involved in the spec-
troscopic transitions detected in our experiment are shown by
bold lines; the transitions are indicated by vertical lines.

elements of H0 in the Broida-Radford basis [31]:

〈1, c/d, J |H0|1, c/d, J〉 = α± δ (40)

〈2, c/d, J |H0|2, c/d, J〉 = 2(a2γ − 2abε+ b2β) (41)

〈3, c/d, J |H0|3, c/d, J〉 = 2(b2γ + 2abε+ a2β) (42)

〈1, c/d, J |H0|2, c/d, J〉 = 21/2[aη ∓ b(ξ ± θ)] (43)

〈1, c/d, J |H0|3, c/d, J〉 = 21/2[bη + a(θ ± ξ)] (44)

〈2, c/d, J |H0|3, c/d, J〉 = 2[a2ε+ ab(γ − β)− b2ε]. (45)

In this formulation, the dependence of the eigenstates of
H0 on the electronic motion and the nuclear vibration is
contained in the parameters ξ = ξ(Q), η = η(Q), and
θ = θ(Q,P ) that depend on the perturbation parameters
Q and P .
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5.2.2 Rotational perturbation in the presence of an external
magnetic field

The Hamiltonian of a molecule subject to a uniform mag-
netic field H is given by

H = H0 +HZ (46)

where the Zeeman Hamiltonian is [35]

HZ = −µZH (47)

with µZ the component of the molecular magnetic dipole
moment operator along the space-fixed Z-axis whose di-
rection is determined by H. The magnetic dipole moment
operator

µZ =
1
2

(Φ+
Z µ
− + Φ−Z µ

+) + ΦzZµz (48)

depends on the body-fixed magnetic dipole moment oper-
ators

µ± = −(gLL± + gSS±)µB (49)
µz = −(gLLz + gSSz)µB (50)

(with gL = 1 and gS ' 2.0023 the orbital and spin gy-
romagnetic ratios and µB the Bohr magneton) and the
direction cosine operator Φ with components

ΦgF = F · g (51)

where F ≡ X,Y,Z and g ≡ x,y, z are unit vectors defin-
ing right-handed Cartesian space- and body-fixed coordi-
nate systems. As a result,

HZ =
[

1
2
(
Φ+

Z L− + Φ−Z L+
)

+ ΦzZLz

]
µBH

+
[

1
2
(
Φ+

Z S− + Φ−Z S+
)

+ ΦzZSz

]
gSµBH

= (LZ + gSSZ)µBH. (52)

The Hund’s case (a) matrix elements of L and S in the
body-fixed, non-rotating frame for the states of interest
are [30,31,35]

〈2Σ±1/2|Sz|2Σ±1/2〉 = ±1
2

(53)

〈2Σ±1/2|S±|2Σ∓1/2〉 = 〈2Π1/2|S−|2Π3/2〉
= 〈2Π3/2|S+|2Π1/2〉
= 〈2Π−1/2|S+|2Π−3/2〉
= 〈2Π−3/2|S−|2Π−1/2〉 = 1 (54)

〈2Π±1/2|Sz |2Π±1/2〉 = ∓1
2

(55)

〈2Π±3/2||Sz|2Π±3/2〉 = ±1
2

(56)

〈2Π±1/2|Lz |2Π±1/2〉 = 〈2Π±3/2||Lz |2Π±3/2〉 = ±1 (57)

〈2Σ±1/2|L±|2Π∓1/2〉 = 〈2Σ1/2|L−|2Π3/2〉
= 〈2Π3/2|L+|2Σ1/2〉
= 〈2Σ−1/2|L+|2Π−3/2〉
= 〈2Π−3/2|L−|2Σ−1/2〉 = LΠ,Σ.

(58)

The direction cosine matrix elements along the space-fixed
Z-axis can be obtained from Hougen’s table [36].

The non-vanishing matrix elements of HZ in the
Radford-Broida basis set then are:

〈1, c, J,M |HZ|1, c, J,M〉 = − M

J + 1
µBH (59)

〈1, d, J,M |HZ|1, d, J,M〉 =
M

J
µBH (60)

〈2, c/d, J,M |HZ|2, c/d, J,M〉 =
[ (

1 +
gS

2

)
a2 3M
J(J + 1)

+ 2gSabtM
]
µBH (61)

〈3, c/d, J,M |HZ|3, c/d, J,M〉 =
[ (

1 +
gS

2

)
b2

3M
J(J + 1)

− 2gSabtM
]
µBH (62)

〈1, c/d, J,M |HZ|2, c/d, J,M〉 = −2−1/2LΠ,ΣM(at∓ bu)
× µBH (63)

〈1, c/d, J,M |HZ|3, c/d, J,M〉 = −2−1/2LΠ,ΣM(bt± au)
× µBH (64)

〈2, c/d, J,M |HZ|3, c/d, J,M〉 = (b2 − a2)gStµBH

+ ab(1+
gS

2
)

3M
J(J+1)

µBH

(65)

with

t ≡ [J(J + 1)− 3/4]1/2

J(J + 1)
, (66)

u ≡ (J + 1/2)
J(J + 1)

c/d (67)

Note that the off-diagonal Zeeman matrix elements (63,
65) modify the field-free perturbations given by the matrix
elements (43, 45). Also, note that states with the same c/d
symmetry have the same parity but not vice versa.

Apart from the matrix elements that connect states
with same J and M there are non-vanishing matrix ele-
ments between states with same M and parity but with
J ’s that differ by ∆J = ±1. These matrix elements
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0
BBBB@

〈1, c, J − 1,M |H|1, c, J − 1,M〉 〈1, c, J − 1,M |H|1, d, J,M〉 〈1, c, J − 1,M |H|3, d, J,M〉

〈1, d, J,M |H|1, c, J − 1,M〉 〈1, d, J,M |H|1, d, J,M〉 〈1, d, J,M |H|3, d, J,M〉

〈3, d, J,M |H|1, c, J − 1,M〉 〈3, d, J,M |H|1, d, J,M〉 〈3, d, J,M |H|3, d, J,M〉

1
CCCCA

(68)

have always to be included for the other member of
the Σ-doublet since members of a Σ-doublet are quasi-
degenerate and have the same parity. On the other hand,
in the case of a large spin-orbit splitting between the
2Π|1/2| and 2Π|3/2| states (or, more accurately, large λ),
there can only be a significant interaction between the
2Σ|1/2| state and just one of the 2Π states (the one that
exhibits an accidental quasi-degeneracy with the 2Σ|1/2|
state). Therefore, the Hamiltonian can be well approxi-
mated by a 3×3 matrix built out of elements that connect
the Σ-doublet with either the 2Π|1/2| or the 2Π|3/2| state.
Note that the other member of the 2Π|1/2| or 2Π|3/2| Λ-
doublet does not interact with the three states because of
its different parity.

Thus, in the case of a quasi-degeneracy, for given vi-
bronic states and a given J , between the |1, d, J,M〉 and
|3, d, J,M〉 states of negative parity, the 3 × 3 Hamilto-
nian matrix will also have matrix elements due to the
|1, c, J − 1,M〉 state:

see matrix (68) above.

The mixed-J matrix elements occur only for the Zeeman
part of the Hamiltonian. For the above case these are:

〈1, c, J − 1,M |H|1, d, J,M〉 =

gS
[(J + 1/2)(J − 1/2)(J +M)(J −M)]1/2

J [(2J + 1)(2J − 1)]1/2
µBH (69)

〈1, c, J − 1,M |H|3, d, J,M〉 =

2−1/2LΠ,Σa
[(J+1/2)(J−1/2)(J+M)(J−M)]1/2

J [(2J+1)(2J−1)]1/2
µBH

+ 2−1/2LΠ,Σb
[(J+3/2)(J+1/2)(J+M)(J−M)]1/2

J [(2J+1)(2J−1)]1/2
µBH.

(70)

5.3 Comparison of theory and experiment

Figure 20 shows the measured (points) spectral shifts (as
derived from the positions of the maxima of the distri-
bution curves of Fig. 13) as a function of the magnetic
field strength at the edge of the trap, Hedge. The shifts
are linear in field strength and correspond to a small dif-
ference (0.02µB) in the magnetic moments between the

Fig. 20. Measured (points) spectral shifts as a function of
the magnetic field strength at the edge of the trap. The dashed
lines show a simulation based on an estimate of the 〈Π|L+|Σ〉
coupling between the B, v′ = 0 and A,v′ = 1 states, the full
line is a fit to the experimental data yielding 〈Π|L+|Σ〉 = 0.4,
see text.

ground and excited states. Taking the field-free parame-
ters of CaH from Berg and Klyning [27] and Martin [28]
(see caption) and approximating LΠ,Σ ≡ 〈Π|L+|Σ〉 by
2〈Π|BLy|Σ〉/BΣ ≡ 2Q/BΣ we obtained Zeeman curves
for the N ′ = 1, J ′ = 3/2, M ′ = ±3/2 that, after sub-
traction of the respective N ′′ = 0, J ′

′
= 1/2, M ′ = ±1/2

curves, yield a qualitative agreement with the observed
Zeeman shifts (dashed lines). The positive Zeeman shift
corresponds to the transition between the N ′′ = 0, J ′′ =
1/2,M ′′ = 1/2 and the N ′ = 1, J ′ = 3/2,M ′ = 3/2
state, and the negative shift to the transition between
the N ′′ = 0, J ′′ = 1/2,M ′′ = −1/2 and the N ′ =
1, J ′ = 3/2,M ′ = −3/2 state. By fitting the calculated
Zeeman shifts to the observed ones (full lines) we obtain
LΠ,Σ = 0.4. This value is about twice that of 2Q/BΣ,
i.e. quite at odds with the “pure precession” hypothesis,
see, e.g., [37]. The analysis of extensive field-free spectra
of CaH [27,28] led earlier to a similar conclusion.

The calculated slope of the negative Zeeman shift is
slightly steeper than that of the positive shift; this is due
to the enhanced repulsion of the N ′ = 1, J ′ = 3/2,M ′ =
3/2 state that lies closer to the perturbing A-state.
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Table 1. Examples of trap parameters of species confined in a buffer-gas loaded magnetic trap. See text.

Species State Buffer gas T [mK] κ 〈µ〉 [µB] Hedge [T] η N
52Cr 7S3

3He 300 ∼ 10 ∼ 6 0.7 ∼ 9 ∼ 1011

4He 1, 400 ∼ 8 ∼ 6 2.4 ∼ 7 ∼ 1011

151,153Eu 8S7/2
3He 250 ∼ 26 ∼ 7 0.6 ∼ 11 ∼ 1012

4He 800 ∼ 20 ∼ 7 2.0 ∼ 12 ∼ 1012

40Ca1H 2Σ+ 3He 400 ∼ 8 ∼ 1 3.0 ∼ 5 ∼ 108

6 A retrospect

Table 1 gives an overview of the characteristic parame-
ters of buffer-gas loaded magnetic traps used in our Cr,
Eu, and CaH experiments. In the above work neither the
production method (laser ablation) nor the magnetic trap-
ping field (an anti-Helmholtz setup) were optimized. And
yet, the initial numbers of the atomic species were about
100 fold of those achieved with alkali metals in MOT’s.
The lifetime of the atomic species in the trap was pri-
marily limited by two-body decay. The decay of CaH was
primarily one-body, corresponding to evaporation over the
trap edge due to a low value of the η parameter.

7 Prospects

7.1 Atoms

Most of the interest, both experimental and theoretical, in
atom trapping has been directed toward bosons. This is
mainly due to the rarity of fermionic isotopes among alkali
metals. Stable fermions are generally rarer than bosons
(because of the relation between the symmetry nature of
the atom and the stability of the nucleus) but the periodic
table is still teeming with them, see Figure 1. Buffer-gas
loaded magnetic traps may make it now possible to explore
a wide variety of ultracold fermionic gases.

A number of new phenomena have been identi-
fied in ultracold fermionic gases, including ultrastabil-
ity, linewidth narrowing, and superfluidity. Most of these
phenomena are easier to observe with larger numbers of
atoms. This is not only due to the obvious advantage of
an increased signal-to-noise ratio, but also due to a higher
Fermi energy.

Ultrastability arises in a weakly interacting ensemble
of fermions due to the antisymmetrization requirement
that prevents the fermions from approaching one another
at distances much smaller than the local de Broglie wave-
length. As a result, at low enough temperatures fermions
interact by the long-range part of their interaction po-
tential only and so their inelastic scattering cross-sections
are suppressed. The work of Koelman et al. [12] showed
that a Fermi gas would persist in a single fine or hyper-
fine (trappable) state while the relatively less suppressed
elastic collisions would ensure thermal equilibrium.

A signature of the Fermi degenerate regime could be
the decrease of the decay rate of electronically excited
atoms. The resulting linewidth narrowing is caused by a

reduction, due to particle symmetry, of the phase space
into which the excited fermions can decay. Although a
high optical density may lead to complications, it might
be possible to produce linewidths narrower than the nat-
ural linewidth, a dramatic effect indigenous to the Fermi
degenerate regime [38–40].

Attaining superfluidity (corresponding to a macro-
scopic wavefunction of Cooper pairs on the Fermi surface)
is another tantalizing prospect for fermions [41,42].

An advantage offered by buffer-gas loaded magnetic
traps over MOT’s is the ease of extending trapping to
other species as well as the large number of atoms (or
molecules) trapped. Buffer-gas loading also may allow the
loading of multiple isotopes [21], and should easily make
possible the loading of multiple species. In order to cool
the sample below the loading temperature, evaporative
cooling can be employed. With a given initial number
of atoms, the lowest temperature attainable by evapora-
tive cooling is limited by the ratio of the rate at which
the atoms redistribute their energy by elastic collisions
to the dipolar relaxation rate. The low-temperature elas-
tic scattering cross-sections vary greatly among species.
For instance, for atomic hydrogen the cross-section is
smaller by a factor of several thousand than for alkali
metals. However, there are reasons to believe that the
alkali-hydrogen elastic cross-section is comparable to that
for the alkali-alkali scattering. Consequently, seeding hy-
drogen with alkali, or possibly chromium, atoms would
enormously enhance the thermalization rate [43]. The re-
sult may be much larger condensates produced in a much
shorter time. Similarly, the ability to load multiple iso-
topes should be of great advantage in attempts to evapo-
ratively cool fermionic isotopes. For instance, in the case
of chromium, 53Cr is a fermion (nuclear spin = 3/2) and
52Cr is a boson (nuclear spin 0). Chromium offers the pos-
sibility of easy loading of the necessary isotopes at high
densities. Then the bosonic 52Cr could be used to thermal-
ize, and hence cool, 53Cr. It remains to be seen, however,
whether the low-temperature elastic and two-body relax-
ation cross-sections will be favorable enough for reaching
the quantum degenerate regime.

7.2 Molecules

Trapping of molecules should prove particularly useful in
spectroscopy and the study of molecular structure, espe-
cially in ultra-high resolution spectroscopy that requires
cold (slow), trapped (long interaction time) samples.
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One of the proposed candidates for use in the search for
an elementary electric dipole moment (EDM, a test of time
reversal symmetry) [44,45] is YbF. High-resolution spec-
troscopic experiments carried out so far probe hot YbF
molecules prepared by thermal dissociation of a precur-
sor. However, using buffer-gas cooled YbF instead could
dramatically increase the sensitivity of the EDM search
[46]. Since the ground-state electronic structure lends YbF
a 1µB dipole moment, such enhanced search experiment
appears feasible. Other paramagnetic molecules are also
the subject of investigation for use in experiments testing
both parity and time reversal violation [47].

Trapping of molecules should in general be benefi-
cial to high resolution spectroscopy. For instance, trapped
molecules could be used to study highly forbidden tran-
sitions. Also, the long interaction time available could
make it easier to tailor the internal wavefunctions of the
molecules using external fields and thus become a tool
of coherent control. The technique should also enable the
study of interactions of ultra-cold gases of molecules whose
axes could, in some cases, be spatially oriented [48–51].
This would enhance the dynamical resolution of many
spectroscopic and collisional experiments since it elim-
inates averaging over random spatial orientations. Such
polarization is possible when the electronic Hamiltonian
possesses nonzero diagonal elements in Hund’s case (a) or
(c) bases.

The creation of low-temperature samples of molecules
may allow loading of the far-off-resonance optical trap
[52,53]. The use of the FORT provides the additional
possibility of doing spectroscopy with no magnetic field
present. It may be possible to use buffer-gas loading to fill
a FORT directly with molecules [54] or by transfer from
a buffer-gas loaded magnetic trap. Trapping in a FORT
of translationally cold (but vibrationally and rotationally
hot) Cs2 prepared by photoassociation has recently been
reported [55].

There is extensive interest in the very low energy col-
lisional relaxation of molecules [56–60]. The production of
ultra-cold molecules would allow the study of collisions
where the translational energy is smaller than the other
relevant energy scales in the system. The technique of-
fers the possibility of investigating low-temperature colli-
sional relaxation processes from excited electronic and ro-
vibrational states. In addition to providing fundamental
information on the interaction of molecules, these studies
would also determine the feasibility of loading atoms and
molecules in very long-lived metastable states.

The technique may also enable the study of collective
quantum effects in molecular systems, both bosonic and
fermionic. It is known that the efficacy of evaporative cool-
ing depends critically on the ratio of the dipolar relaxation
cross-section to the elastic cross-section. There is an ex-
treme sensitivity of this ratio to subtle details of the in-
teraction potential. The effects of these cross-sections on
the behavior of a molecular Bose condensate or a Fermi
degenerate gas is an open question [61–63]. Using a variety
of different molecules to form ultracold gases could help
understand these new forms of matter.

This material is based upon work supported by the National
Science Foundation under Grant No. PHY-9511951. J.D.W.
is supported by a National Science Foundation Graduate Re-
search Fellowship.

Appendix

The Zeeman Hamiltonian of an atom with electronic spin
and orbital angular momenta S and L and a zero nuclear
spin subject to a magnetic field H takes the form [64]:

H = gJµBJ · H (A.1)

where J is the total electronic angular momentum of
the atom, gJ the corresponding g-factor, and µB the
Bohr magneton. The matrix elements of H can be ob-
tained analytically, either in the coupled basis, |J,M〉,
corresponding to the weak-field limit, or in the uncou-
pled basis, |ML,MS〉, corresponding to the strong-field
limit (Paschen-Back uncoupling). Hence either yields the
eigenenergies and line strengths in closed form.

A.1 Low-field limit

In the low-field limit, the angular momenta S and L cou-
ple to a resultant total angular momentum J = S + L
characterized by a quantum number J = L + S,L +
S − 1, ..., |L− S|; each value of J has 2J + 1 projections
M = −J,−J + 1, ...,+J on the space-fixed axis defined
by the direction of H. Note that there are

∑
J (2J + 1) =

(2L + 1)(2S + 1) coupled states |J,M〉. The eigenenergy
is given by [64]

E(J,M) = MgJµBH (A.2)

where

gJ = gL
J(J + 1) + L(L+ 1)− S(S + 1)

2J(J + 1)

+ gS
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(A.3)

S and L are the total electronic spin and orbital an-
gular momentum quantum numbers, and gL = 1 and
gS
∼= 2.0023 are the orbital and spin gyromagnetic ratios

of the electron; H ≡ |H|.
The line strength factor Sq(L′S′J ′M ′;LSJM) of a

transition between states |L′S′J ′M ′〉 ← |LSJM〉 due to
an electric dipole moment dq (of unit magnitude, with
q = 0 for parallel and q = ±1 for perpendicular transi-
tions) is given by [65]

Sq = |〈L′S′J ′M ′|dq|LSJM〉|2 (A.4)

with

〈LSJM |dq|L′S′J ′M ′〉 =

(−1)2J−M′+L′+S+1[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′

−M q M ′

){
L 1 J

J ′ S L

}
〈L||d||L′〉. (A.5)
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A.2 Strong-field limit

In the strong-field limit, the angular momenta L and S
are no longer integrals of motion but their projections ML

and MS on the space-fixed axis are. Since ML and MS

take respectively (2L+ 1) and (2S + 1) values, there are
(2L+1)(2S+1) uncoupled states |ML,MS〉. In the uncou-
pled basis, the eigenvalues of Hamiltonian (A.1) are given
by [64]

E(ML,MS) = MLgLµBH +MSgSµBH. (A.6)

The line strength factor Sq(M ′L,M
′
S;ML,MS) of a tran-

sition between states |M ′L,M ′S〉 ← |ML,MS〉 due to an
electric dipole moment dq (of unit magnitude, with q = 0
for parallel and q = ±1 for perpendicular transitions) is
given by [65]

Sq = |〈M ′L,M ′S|dq|ML,MS〉|2 (A.7)

with

〈M ′L,M ′S|dq|ML,MS〉 = (−1)L−MLδ(M ′S,MS)

×

 L 1 L′

−ML q M
′
L

 〈L||d||L′〉. (A.8)

A.3 Populations and intensities

The initial field-free populations, P (J), of an J-state at a
temperature T are given by

P (J) = (2J + 1) exp
(
−EJ

kT

)
· (A.9)

In the high-field limit, the populations of the |ML,MS〉
states are determined by adiabatic transfer of the low-field
populations of the |J,M〉 states which, in turn, is given
by the transformation of the coupled to the uncoupled
basis [30]:

P (ML,MS) ∝ 〈LML, SMS|JM〉2

= (2J + 1)

(
L S J

ML MS −M

)2

. (A.10)

The correlation between the low- and high-field limits is
determined by the non-vanishing 3-J symbols. The inten-
sities, I, of the transitions between states in absorption or
excitation spectra are then given by

I(M ′L,M
′
S;ML,MS)∝P (ML,MS)S(M ′L,M

′
S;ML,MS).

(A.11)
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